LabArchives is invested in supporting digital learning and Open Educational Resources (OER). Hundreds of labs and protocols are available through Lab Builder, our open source library.

To find out more and to gain free access to our complete library of content, please visit our website to sign up for an account.

Lab Builder, by LabArchives, also offers OpenStax textbooks at no cost inside of your LabArchives account. Build a complete course using the LabArchives notebook platform, course management tools, and our open digital library. Please contact Support with any questions on how begin implementation in to your course.

To stay up to date on all things LabArchives and read about our numerous success stories, please visit our Blog.
Gram Stain Protocol

Molly Smith
molly.smith@sgsc.edu
South Georgia State College

Sara Selby
sara.selby@sgsc.edu
South Georgia State College

Attribution
Smith, Molly and Selby, Sara, "Microbiology for Allied Health Students: Lab Manual" (2017). Biological Sciences Open Textbooks. 16. is licensed under CC BY 4.0.

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. All content included in Lab Builder includes rights to use within LabArchives. For detailed information on various Creative Commons type licenses for the content which appear in Lab Builder go to www.creativecommons.org.

Topic
- Gram stain
- Gram positive
- Gram negative
- Safranin
- Crystal violet
- Gram's iodine
- Aseptic technique

Timeline
- Procedure: < 1 hour

Safety
- Wear gloves and safety goggles!
- Please refer to the biosafety guidelines for handling microorganisms in teaching laboratories.
Protocol – Microbiology: Gram Stain

Protocol

Preparation of Microscope Slide:

1. Clean slide with a Kimwipe and alcohol to remove any fingerprints.
2. Draw two circles with your Sharpie on the **bottom** of the slide.
3. Using your inoculation loop, put **two small** drops of water in each circle.
4. Using aseptic technique, remove a **very small** amount of bacteria from the culture tube. Make sure you flame the tube before and after you enter.
5. Smear the bacteria in the drop of water on your slide. You may go out of the perimeter of your circles!
6. Let the slide **air dry completely**.
7. Heat-fix the slide by running it through the flame 3-4 times with the ‘smear’ side up. Do not flame the side with the bacteria!
8. Let the slide cool completely and you are ready to stain it.

Staining Procedure:

1. At a sink, place **crystal violet** on each smear for 1 minute.
2. Rinse the crystal violet off of the slide by swishing the slide gently in the large beakers labeled ‘Crystal Violet’.
3. Tap slide on paper towel to remove most of the water.
4. Place **Gram’s iodine** on each smear for 1 minute.
5. Rinse by running water from the tap very slowly over the surface of the slide while holding it at an angle.
6. Tap slide on paper towel to remove most of the water.
7. Place **ethanol** on each smear and for 15-30 seconds. This is the most variable step.
8. Rinse with water and tap dry.
9. Place **safranin** on each smear for 1 minute.
10. Rinse with water and tap dry.
11. Blot **gently** with bibulous paper.
12. Dry the bottom of the slide before placing it on the stage of the microscope and view with the oil immersion lens.
Protocol – Microbiology: Gram Stain

DIFFERENTIAL STAINS

<table>
<thead>
<tr>
<th>Stain Type</th>
<th>Specific Dyes</th>
<th>Purpose</th>
<th>Outcome</th>
<th>Sample Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram stain</td>
<td>Uses crystal violet, Gram’s iodine, ethanol</td>
<td>Used to distinguish cells by cell-wall type (gram-positive, gram-negative)</td>
<td>Gram-positive cells stain purple/violet. Gram-negative cells stain pink.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(decolorizer), and safranin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Information on Gram stain.

Gram stain process

<table>
<thead>
<tr>
<th>Gram staining steps</th>
<th>Cell effects</th>
<th>Gram-positive</th>
<th>Gram-negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Crystal violet</td>
<td>Stains cells purple or blue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary stain added to specimen smear.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2 Iodine</td>
<td>Cells remain purple or blue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mordant makes dye less soluble so it adheres to cell walls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 Alcohol</td>
<td>Gram-positive cells remain purple or blue. Gram-negative cells are colorless.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decolorizer washes away stain from gram-negative cell walls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 Safranin</td>
<td>Gram-positive cells remain purple or blue. Gram-negative cells appear pink or red.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counterstain allows dye adherence to gram-negative cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Gram-staining is a differential staining technique that uses a primary stain and a secondary counterstain to distinguish between gram-positive and gram-negative bacteria.